Plane Jacobian Conjecture for Rational Polynomials

نویسندگان

  • NGUYEN VAN CHAU
  • Carlos Gutierrez
چکیده

We verify the plane Jacobian conjecture for the rational polynomials: A polynomial map F = (P, Q) : C −→ C, P, Q ∈ C[x, y], is invertible if PxQy − PyQx ≡ const. 6= 0 and, in addition, P is a rational polynomial, i.e. the generic fiber of P is the 2-dimensional topological sphere with a finite number of punctures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plane Jacobian problem for rational polynomials

This paper is to present a geometrical proof of the plane Jacobian conjecture for rational polynomials by an approach of Newton-Puiseux data and geometry of rational surfaces. The obtained result shows that a polynomial map F = (P, Q) : C −→ C with PxQy − PyQx ≡ const. 6= 0 has a polynomial inverse if the component P is a rational polynomial, i.e. if the generic fiber of P is the 2-dimensional ...

متن کامل

Pencil of Polynomials and the Plane Jacobian Conjecture

It is shown that a polynomial map F = (P, Q) of C with finite fibres is a polynomial automorphism if for all (a : b) ∈ P the polynomials aP + bQ are irreducible and the curves aP + bQ = 0 are rational curves. In consequence, a non-zero constant Jacobian polynomial map F of C is a polynomial automorphism if the inverse images F(l) of complex lines l ⊂ C passing through (0, 0) are irreducible rat...

متن کامل

The Complete Classification of Rational Preperiodic Points of Quadratic Polynomials over Q: a Refined Conjecture

We classify the graphs that can occur as the graph of rational preperiodic points of a quadratic polynomial over Q, assuming the conjecture that it is impossible to have rational points of period 4 or higher. In particular, we show under this assumption that the number of preperiodic points is at most 9. Elliptic curves of small conductor and the genus 2 modular curves X1(13), X1(16), and X1(18...

متن کامل

Plane Jacobian conjecture for simple polynomials

A non-zero constant Jacobian polynomial map F = (P,Q) : C −→ C 2 has a polynomial inverse if the component P is a simple polynomial, i.e. if, when P extended to a morphism p : X −→ P of a compactification X of C, the restriction of p to each irreducible component C of the compactification divisor D = X −C is either degree 0 or 1.

متن کامل

Comment on a Paper by Yucai Su on Jacobian Conjecture (dec 30, 2005)

The said paper [Su2] entitled " Proof Of Two Dimensional Jacobian Conjecture " is false. Comments The Jacobian Conjecture is a well-known hard problem. Recently there are many attempts to solve it. This paper is one of the false attempts. Minor mistakes We have read Su's latest version (Dec 30, 2005) of his papers. There are numerous typos (say, some d ′ s, and all d ′ i s really should be d 2 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008